Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments
نویسندگان
چکیده
Salinity-induced osmotic, ionic and oxidative stress responses were investigated on Asakaze/Manas wheat/barley addition lines 7H, 7HL and 7HS, together with their barley (salt-tolerant) and wheat (relatively salt-sensitive) parents. Growth, photosynthetic activity, chlorophyll degradation, proline, glycine betaine accumulation, sugar metabolism, Na+ and K+ uptake and transport processes and the role of polyamines and antioxidants were studied in young plants grown in hydroponic culture with or without salt treatment. Changes in plant growth and photosynthetic activity of plants demonstrated that the salt tolerance of the addition lines 7H and 7HL was similar to that of barley parent cv. Manas, while the sensitivity of the addition line 7HS was similar to that of the wheat parent cv. Asakaze. The Na accumulation in the roots and shoots did not differ between the addition lines and wheat parent. The activation of various genes related to Na uptake and transport was not correlated with the salt tolerance of the genotypes. These results indicated that the direct regulation of Na transport processes is not the main reason for the salt tolerance of these genotypes. Salt treatment induced a complex metabolic rearrangement in both the roots and shoots of all the genotypes. Elevated proline accumulation in the roots and enhanced sugar metabolism in the shoots were found to be important for salt tolerance in the 7H and 7HL addition lines and in barley cv. Manas. In wheat cv. Asakaze and the 7HS addition line the polyamine metabolism was activated. It seems that osmotic adjustment is a more important process in the improvement of salt tolerance in 7H addition lines than the direct regulation of Na transport processes or antioxidant defence.
منابع مشابه
بررسی غلظت سدیم و نسبت پتاسیم به سدیم بهعنوان ملاک تحمل به شوری در گندم و جو
Most researches on wheat and barley breeding for salt tolerance have focused mainly on excluding Na+ from different tissues but the results of some experiments suggest that contribution of Na+ exclusion to salt tolerance is overshadowed by other physiological responses. Three bread wheat cultivars differing in salt tolerance (Arg, Tajan and Baharan) and one barley cultivar (Nik) were employed t...
متن کاملComparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance.
Salt tolerance of plants depends on HKT transporters (High-affinity K(+) Transporter), which mediate Na(+)-specific transport or Na(+)-K(+) co-transport. Gene sequences closely related to rice HKT genes were isolated from hexaploid bread wheat (Triticum aestivum) or barley (Hordeum vulgare) for genomic DNA southern hybridization analysis. HKT gene sequences were mapped on chromosomal arms of wh...
متن کاملChromosomal assignment and deletion mapping of barley EST markers.
From about 10000 PCR-based EST markers of barley we chose 1421 EST markers that were demonstrated to be amplified differently by PCR between wheat (Triticum aestivum cv. Chinese Spring) and barley (Hordeum vulgare cv. Betzes). We assigned them to the seven barley chromosomes (1H to 7H) by PCR analysis using a set of wheat-barley chromosome addition lines. We successfully assigned 701 (49.3%) ES...
متن کاملTranscriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines.
Wheat-barley chromosome addition lines are useful genetic resources for a variety of studies. In this study, transcript accumulation patterns in Betzes barley, Chinese Spring wheat, and Chinese Spring-Betzes chromosome addition lines were examined with the Barley1 Affymetrix GeneChip probe array. Of the 4014 transcripts detected in Betzes but not in Chinese Spring, 365, 271, 265, 323, 194, and ...
متن کاملEffects of barley chromosome addition to wheat on behavior and development of Locusta migratoria nymphs
Locusta migratoria feeds on various Poaceae plants but barley. Barley genes related to feeding deterrence may be useful for developing novel resistant crops. We investigated the effects of barley cultivar Betzes, wheat cultivar Chinese Spring (CS), and six barley chromosome disomic addition lines of wheat (2H-7H) on locomotor activity, feeding behavior, survival and development of L. migratoria...
متن کامل